

مستشفى الملك فيصل التخصصي ومركز الأبحاث King Faisal Specialist Hospital & Research Centre Gen. Org. Lala

Challenge 2016 RADIOTHERAPY PLAN COMPETITION

Be the strongest link in the radiotherapy chain

By Timothée Ruef

Medical Physicist Center Leonard de Vinci

Agenda

- Competition criteria
- Contouring stage
- Arc geometry
- Optimization
- Results
- Conclusions

Competition criteria

Plan Quality Scoresheet: 2016Competition-BodyMax

This is the Plan Quality results spreadsheet for Plan Quality Algorithm: 2016Competition-BodyMax.

Raw PQM / Max PQM: 94.02 / 100.00 PQM (%): 94.0%

Plan Quality Metric Component	Objective(s)	Max Score	
[PTV_TOT_EVAL] D[99.0%] (Gy)	> 45 [≥ 47.5]	15.00	
[PTV_TOT_EVAL] D[95.0%] (Gy)	> 45 [≥ 50]	5.00	
[PTV_TOT_EVAL] D[50.0%] (Gy)	< 54 [≤ 52]	5.00	
[PTV_TOT_EVAL] D[0.3cc] (Gy)	< 57 [≤ 55]	5.00	
[HEART] Mean dose (Gy)	< 5 [≤ 4]	10.00	
[HEART] V[15.0Gy] (%)	< 20 [≤ 15]	5.00	
[HEART] D[5.0%] (Gy)	< 25 [≤ 20]	5.00	
[BREAST_RIGHT] D[0.3cc] (Gy)	< 3 [≤ 2]	2.00	
[BREAST_RIGHT] D[5.0%] (Gy)	< 3 [≤ 2]	4.00	
[SPINAL CORD] D[0.03cc] (Gy)	< 20 [≤ 8]	5.00	
[LUNG_RIGHT] V[5.0Gy] (%)	< 6 [≤ 3]	5.00	
[LUNG_LEFT] Mean dose (Gy)	< 15 [≤ 9]	5.00	
[LUNG_LEFT] V[20.0Gy] (%)	< 20 [≤ 15]	5.00	
[LUNG_LEFT] V[10.0Gy] (%)	< 40 [≤ 30]	5.00	
[LUNG_LEFT] V[5.0Gy] (%)	< 70 [≤ 50]	4.00	
[PTV_TOT_EVAL] Homogeneity Index [50.0Gy]	< 0.2 [≤ 0.08]	5.00	
[PTV_TOT_EVAL] Conformation Number [47.5Gy]	> 0.6 [≥ 0.9]	5.00	
Global Max Location (ROI)	[BODY]	5.00	
Total [18 Metrics]		100.00	

Lung left constraints are the most challenging to achieve and give a lot of points. The interface between left lung and PTV is the area where the dose have to be well controled.

Others constraint are more easy to reach.

Contouring stage

 Create the (Left Lung + 1cm)=(LL+1) ROI and then create the PTVs parts that overlap with it and the parts that do not.

Do this for the PTV_TOT-EVAL and for all the subPTVs. They will all be used for the optimization.

Contouring stage

 Add min dose constraint on a thin internal ring of 4mm inside the PTV. It is divided in two parts, the part that overlaps (LL+1) and the rest. All these parts exclude the CTV-LUMPECTOMY which is treated separately.

Contouring stage

- Use an external ring of 7mm with 4mm gap between PTV (R1).
- Draw the head of the patient to avoid dose from non-coplanar ARCs.

Contouring Stage

 Add an external ring of 1cm (R2) without gap with PTV in the SC area to increase conformality.

Contouring Stage

 Trace the body with 2,5cm margin from PTV and trim it manually where dose can be

higher.

Here in brown : Whole body excluding (PTV+2.5cm) manually trimmed (ZR1). And in purple the trimmed area (ZR2).

Contouring Stage

- For the Left Lung, use a 4mm gap with the PTV to create an optimisation ROI.
- Create Spine +5mm ROI.
- There is no need to create supplementary ROI for the others OAR.

ARC Geometry

- Isocenter location:
 - on the Y axis: At the middle of the headfoot distance
 - on the XZ plane: At the interface between the heart and the PTV.

ARC Geometry

 3 non-coplanar beams with different collimator angles to increase the possibilities of modulation.

Beam Details	Geometry (IEC)	Modifiers	BEV	# CPs	Meterset
[1] Name: ARC1 [Desc: ARC1] Type: Photon Treatment (VMAT) Machine: VERSA3, Energy: 6 MV # Fractions: 25 (Fx Group 1)	Gantry Motion: CCW Gantry Start-to-End (deg): 180-to-290 Collimator (deg): 345 Couch (deg): 10 Isocenter [DICOM] (mm): (101.6,10.4,-60.0) Isocenter [Couch] (mm): (0.0.0.0,00)	[X Jaws*] X1: -111.00 mm, X2: 111.00 mm [Y Jaws*] Y1: -130.00 mm, Y2: 140.00 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)	8	64	^{141.1} ми 46sec
[2] Name: ARC2 [Desc ARC2] Type: Photon Treatment (VMAT) Machine: VERSA3, Energy: 6 MV # Fractions: 25 (Fx Group 1)	Gantry Motion: CW Gantry Start-to-End (deg): 290-to-180 Collimator (deg): 10 Couch (deg): 350 Isocenter [DICOM] (mm): (101.6,104,-60.0) Isocenter [Couch] (mm): (0.0.0.0,00)	[X Jaws*] X1: -97.00 mm, X2: 104.00 mm [Y Jaws*] Y1: -130.00 mm, Y2: 160.00 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)		64	^{187.9} МU 68sec
 [3] Name: ARC3 [Desc ARC3] Type: Photon Treatment (VMAT) Machine: VERSA3, Energy: 6 MV # Fractions: 25 (Fx Group 1) 	Gantry Motion: CW Gantry Start-to-End (deg): 290-to-180 Collimator (deg): 25 Couch (deg): 0 Isocenter [DICOM] (mm): (101.6,10.4, 60.0) Isocenter [Couch] (mm): (0.0,0.0,0)	[X Jaws*] X1: -118.00 mm, X2 103.00 mm [Y Jaws*] Y1: -130.00 mm, Y2 160.00 mm * Max jaw extents (all control points) Multi-Leaf Collimation (X)	8	64	239.9 MU 95sec

NOTE: "VMAT" label(s) derived from: 1) usage of MLC and 2) multi-segmented arc.

ARC Geometry

- Limit the gantry rotation to spare controlateral's OARs.
- 6MV FF beams.

 Use 0,05g/cm⁻³ air-patient threshold to allow computation in low density area near the skin.

- Begin with all the target and ring constraints:
 - Targets that overlap with (LL+1) : min dose to 48Gy and max to 50Gy
 - Targets that do not overlap (LL+1) : min dose to 50Gy and max dose to 51,5Gy
 - CTV-LUMPECTOMY: min dose 50,5Gy, uniform dose at 51Gy and max dose at 54Gy
 - PTV_TOT_EVAL part that do not overlaps (LL+1) : uniform dose to 50,5Gy, min dose 50Gy and max dose to 51,5Gy

- PTV_TOT_EVAL part that overlaps (LL+1) : min dose 48Gy and max dose to 50Gy
- PTV_TOT_EVAL : max EUD 52Gy a=1 and min
 DVH 50Gy on 95%
- ring R1: max dose 47Gy, R2: max dose 51Gy.
- ROI ZR1: max dose 40Gy and ZR2: max dose 45Gy

- Begin with SVD calculation to ensure that the constraints are good and then, when the target coverage is sufficient, add the OAR constraints.
- Breast right: max dose 1.8Gy, Heart: max EUD 3.8Gy a=1, and Lung right: max DVH 3Gy 4% and max EUD 6Gy a=5. Those criteria are easy to achieve. So when the criteria is found for these structures, try to gradually decrease the dose to the left Lung until it penalizes the target coverage.

- Left Lung reduced: Max DVH (4.75Gy 47%), (10Gy 20%) and (20Gy 6%).
- When all constraints are optimized, reset the computation and optimize twice with 100 iterations and then 40 iterations.
- Create the hot and cold spots for several computations (7 in my case), add a constraint on them with a strong weight, reset and re-optimize until you get the global max dose point inside the CTV.

- Inverse Planning r										
File Options U	tilities Display	Optimize Convert Rute-Plan	Patient: Plan:	Plan Com Plan_4	petition TR2,	FEB-2016, Rev : R05	.P03.D04	Trial_7	-	l 🦹
Max Iterations]40				Dose Vo	lume Histograr	n <u>(</u>	Viewing V	Vindow	1
Current Iteration	6				10-		Dose Volu	ume Histogram	1	
Parameters	٥				0.9				-	Ø →
IMRT Parameters	Reset Beams				0.8-				8	
Start Optimization	Stop Optimization				0.7- 0.6-	1 À				
				No	m.Volume ^{0.5} -	60	2		8	
Beam Do	ose Status	Opening Density Matrix	ARC1	-	0.4					
ARC1 Co	omputed			- 1	0.3-	1-				
ARC2 Co	omputed				0.1		_ +0			
ARC3 Co	omputed				0.8	1000	2000	3000	1000	5000 <u>6000</u>
							Dos	e (CGy)		
				DI)se	 Normalized 	Absolute		Dise	Lugi (
					June	 Nomanzeu 	/ Absolute		<u></u>	
8-8	ROI	Туре	Constrain	Target cGy	% Volume	% Variation	Weight	Objective Value	a	geud 🛛
And Oh is allow	PTVHR-pmg1	Min Dose =] 5000	Ī] 100	0.0045591		
Delete Objective	PTVHR-pmg1	Uniform Dase =] 5050) 100	0.0460338		
<u>,</u>	> PTVHRxpmg1	💷 🛛 Max Dose 🗖	ī	1 5000	-		, 100	0.0336766		
Sort Objectives	A PTVHBapant	I Min Dose I		l'ason			ľ inn	0.0711659		-
<u>our objectives</u>				1:4000	-		1100	0.3211000	1.	
				;5200		_	100]1	5091.64
	↓ PTV_TOT_EV.	ALE Min DVH E		5000] 85] 90	0.000697886		
	ब <u></u>	- C	1					6.		M N
					Composite	objective value:		<u>F</u>	Recompute	Values

Plan Quality Scoresheet: 2016Competition-BodyMax

This is the Plan Quality results spreadsheet for Plan Quality Algorithm: 2016Competition-BodyMax.

Raw PQM / Max PQM: 94.02 / 100.00 PQM (%): 94.0%

Plan Quality Metric Component	Objective(s)	Result	Raw Score	Max Score	Performance
[PTV_TOT_EVAL] D[99.0%] (Gy)	> 45 [≥ 47.5]	48.2742	15.00	15.00	100.0%
[PTV_TOT_EVAL] D[95.0%] (Gy)	> 45 [≥ 50]	49.2918	4.29	5.00	85.8%
[PTV_TOT_EVAL] D[50.0%] (Gy)	< 54 [≤ 52]	51.0359	5.00	5.00	100.0%
[PTV_TOT_EVAL] D[0.3cc] (Gy)	< 57 [≤ 55]	54.5638	5.00	5.00	100.0%
[HEART] Mean dose (Gy)	< 5 [≤ 4]	3.7643	10.00	10.00	100.0%
[HEART] V[15.0Gy] (%)	< 20 [≤ 15]	4.0424	5.00	5.00	100.0%
[HEART] D[5.0%] (Gy)	< 25 [≤ 20]	11.8445	5.00	5.00	100.0%
[BREAST_RIGHT] D[0.3cc] (Gy)	< 3 [≤ 2]	1.9574	2.00	2.00	100.0%
[BREAST_RIGHT] D[5.0%] (Gy)	< 3 [≤ 2]	1.5872	4.00	4.00	100.0%
[SPINAL CORD] D[0.03cc] (Gy)	< 20 [≤ 8]	6.7690	5.00	5.00	100.0%
[LUNG_RIGHT] V[5.0Gy] (%)	< 6 [≤ 3]	2.6883	5.00	5.00	100.0%
[LUNG_LEFT] Mean dose (Gy)	< 15 [≤ 9]	10.3627	3.86	5.00	77.3%
[LUNG_LEFT] V[20.0Gy] (%)	< 20 [≤ 15]	16.0776	3.92	5.00	78.4%
[LUNG_LEFT] V[10.0Gy] (%)	< 40 [≤ 30]	28.9782	5.00	5.00	100.0%
[LUNG_LEFT] V[5.0Gy] (%)	< 70 [≤ 50]	52.4144	3.28	4.00	81.9%
[PTV_TOT_EVAL] Homogeneity Index [50.0Gy]	< 0.2 [≤ 0.08]	0.0942	4.29	5.00	85.8%
[PTV_TOT_EVAL] Conformation Number [47.5Gy]	> 0.6 [≥ 0.9]	0.7793	3.38	5.00	67.6%
Global Max Location (ROI)	[BODY]	BODY	5.00	5.00	100.0%
Total [18 Metrics]			94.02	100.00	94.0%

Global Max Dose (Gy): 55.15805 Grid Resolution (mm): 2.90 x 2.90 x 2.90 Grid Range X (mm): -342.563 to 133.037 Grid Range Y (mm): -185.391 to 226.408 Grid Range Z (mm): -188.866 to 89.534 Origin set to DICOM XYZ (mm): (101.573, 10.366, -60.001)

NOTE: This software uses an intuitive "couch coordinate system" (not DICOM) for XYZ points, with the origin set to the first isocenter. +X is couch's lateral "left"; +Y is in towards gantry; and +Z is vertical up from couch.

- Patient specific QA:
 - Passing criteria:
 - Gamma index 3%3mm>90%
 - Gamma index 4%3mm>95%
 - Results

	Gamma index criteria			
Measure	3%3mm	4%3mm		
1cm ANT	93.70%	96.50%		
2cm POST	91.50%	96.40%		

Conclusion

- Isocenter location very important both for target conformality and OAR sparing.
- Segmentation of the target helps to control dose to ipsilateral lung.
- Non-coplanar beams not really nescessary to have a good plan but help to reduce the low dose areas.